voting ensemble classifier

Read more in the User Guide. However, the final results are not expected until Saturday. The aim of the first stage (level 0) is to generate the training data for the meta-model, this is carried out by implementing k-fold cross validation for each weak learner defined in the first stage. Now that we've explored different methods we can use to create ensemble models, let's take a look at how we could implement a classifier using the different methods. This is what Ensemble Learning tries to do, that is, to put together a group of ML models to improve solutions to specific problems. Before we get into the big three ensemble methods we covered earlier, let's cover a very quick and easy method of using an ensemble approach - averagingpredictions. The electoral register and the 'open register' - GOV.UK The Voting Classifier - Coding Ninjas Congratulations, we have reached the end of this great journey to learn a little more about Ensemble Learning. Ensemble Learning refers to the use of ML algorithms jointly to solve classification and/or regression problems mainly. Abstract. Now that our data has been preprocessed, we can select our features and labels and then use the train_test_split function to divide our entire training data up into training and testing sets: We're now ready to start implementing ensemble classification methods. In line 4 we are defining the 5 base classifiers that we will use (weak learners), in line 11 we define the final classifier, as in the previous example, we will use Logistic Regression. Share. Tuning the hyper-parameters of an estimator, 4.1. As for the individual models, results showed that Inception-V1 outperformed Inception-V3 according to different measures. Then, soft-voting ensemble classifier models have been separately built on these models to boost the performance. Returns the parameters given in the constructor as well as the estimators contained within the estimators parameter. Elections 2022: How do I vote? - BBC News Note that this is supported only if all underlying estimators support sample weights. ensemble-classifier GitHub Topics GitHub Where was 2013-2023 Stack Abuse. These classifiers can also be used alongside the K-folds cross-validation tool. Many researchers and business people have adopted it because of the following nature. Sequence of weights (`float` or `int`) to weight the occurrences of. Return class labels or probabilities for each estimator. The green boxes represent the test data which is used to generate predictions to form the meta-model test data (purple boxes). We fit the classifiers on the data and then save the predictions as variables. Target values (None for unsupervised transformations). python - VotingClassifier: Different Feature Sets - Stack Overflow This paper proposes use of ensemble voting learning classification approach for sentiment classification of movie review dataset collected from IMDB. Uses uniform weights if `None`. class sklearn.ensemble.VotingRegressor(estimators, *, weights=None, n_jobs=None, verbose=False) [source] . Example: Gaussian process regression on Mauna Loa CO2 data. The EnsembleVoteClassifier implements "hard" and "soft" voting. The only difference is that in Blending, the k-fold cross validation technique is not used to generate the training data of the meta-model. Return the mean accuracy on the given test data and labels. If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes). However, there is a variation, we can omit k-fold cross validation and only use one-holdout set, this small but significant variation is called Blending. Ok, now that we know how the Voiting Classifier works, lets see how to do this in code. https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.VotingClassifier.html, https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.VotingClassifier.html, 1.12. Next we need to decide which algorithms we want to use. Well, that will depend 100% on the task you are trying to solve, the amount of data you have as well as the computing power and memory available. ML models). Bagging, also known as bootstrapaggregating, is a classification method that aims to reduce the variance of estimates by averaging multiple estimates together. In order to reduce the occurrence of defects, it is necessary to identify why they occur, and it can be. These codes are contained of Normalization, Oversampling on Feature Engineering part. As for the ensemble classifier models, the outcome of experiments pointed out that the adopted voting strategy . Both the F1 score (a mixture of positive class accuracy and true positives rate) and the accuracy scores were slightly higher than the Gradient Boosting alone and much better than the Decision Tree alone. predicted class labels (`hard` voting) or class probabilities. Scikit-Learn allows you to easily create instances of the different ensemble classifiers. Let's take a look at the different ensemble classification methods and see how these classifiers can be implemented in Scikit-Learn. Aspiring data scientist and writer. Next, lets create a list of these models, so we can loop them to compare the results separately. Example: Gaussian process regression with noise-level estimation, Example: Gaussian processes on discrete data structures, Example: Gradient Boosting Out-of-Bag estimates, Example: Gradient Boosting regularization, Example: Hashing feature transformation using Totally Random Trees, Example: HuberRegressor vs Ridge on dataset with strong outliers, Example: Illustration of Gaussian process classification on the XOR dataset, Example: Illustration of prior and posterior Gaussian process for different kernels, Example: Image denoising using dictionary learning, Example: Imputing missing values before building an estimator, Example: Imputing missing values with variants of IterativeImputer, Example: Iso-probability lines for Gaussian Processes classification, Example: Joint feature selection with multi-task Lasso, Example: Kernel Density Estimate of Species Distributions, Example: L1 Penalty and Sparsity in Logistic Regression, Example: Label Propagation digits active learning, Example: Label Propagation learning a complex structure, Example: Lasso and Elastic Net for Sparse Signals, Example: Linear and Quadratic Discriminant Analysis with covariance ellipsoid, Example: Logistic Regression 3-class Classifier, Example: MNIST classification using multinomial logistic + L1, Example: Manifold Learning methods on a severed sphere, Example: Manifold learning on handwritten digits, Example: Map data to a normal distribution, Example: Model selection with Probabilistic PCA and Factor Analysis, Example: Model-based and sequential feature selection, Example: Multi-class AdaBoosted Decision Trees, Example: Multi-output Decision Tree Regression, Example: Multiclass sparse logistic regression on 20newgroups, Example: Nearest Neighbors Classification, Example: Neighborhood Components Analysis Illustration, Example: Nested versus non-nested cross-validation, Example: Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification, Example: Novelty detection with Local Outlier Factor, Example: One-class SVM with non-linear kernel, Example: Online learning of a dictionary of parts of faces, Example: Ordinary Least Squares and Ridge Regression Variance, Example: Out-of-core classification of text documents, Example: Outlier detection on a real data set, Example: Outlier detection with Local Outlier Factor, Example: Parameter estimation using grid search with cross-validation, Example: Partial Dependence and Individual Conditional Expectation Plots, Example: Permutation Importance vs Random Forest Feature Importance, Example: Permutation Importance with Multicollinear or Correlated Features, Example: Pixel importances with a parallel forest of trees, Example: Plot Hierarchical Clustering Dendrogram, Example: Plot Ridge coefficients as a function of the L2 regularization, Example: Plot Ridge coefficients as a function of the regularization, Example: Plot class probabilities calculated by the VotingClassifier, Example: Plot different SVM classifiers in the iris dataset, Example: Plot individual and voting regression predictions, Example: Plot multi-class SGD on the iris dataset, Example: Plot multinomial and One-vs-Rest Logistic Regression, Example: Plot randomly generated classification dataset, Example: Plot randomly generated multilabel dataset, Example: Plot the decision boundaries of a VotingClassifier, Example: Plot the decision surface of a decision tree on the iris dataset, Example: Plot the decision surfaces of ensembles of trees on the iris dataset, Example: Plot the support vectors in LinearSVC, Example: Plotting Cross-Validated Predictions, Example: Poisson regression and non-normal loss, Example: Post pruning decision trees with cost complexity pruning, Example: Prediction Intervals for Gradient Boosting Regression, Example: Principal Component Regression vs Partial Least Squares Regression, Example: Probabilistic predictions with Gaussian process classification, Example: Probability Calibration for 3-class classification, Example: Probability calibration of classifiers, Example: ROC Curve with Visualization API, Example: Receiver Operating Characteristic, Example: Receiver Operating Characteristic with cross validation, Example: Recursive feature elimination with cross-validation, Example: Regularization path of L1- Logistic Regression, Example: Release Highlights for scikit-learn 0.22, Example: Release Highlights for scikit-learn 0.23, Example: Release Highlights for scikit-learn 0.24, Example: Restricted Boltzmann Machine features for digit classification, Example: Robust covariance estimation and Mahalanobis distances relevance, Example: Robust linear model estimation using RANSAC, Example: Robust vs Empirical covariance estimate, Example: SGD: Maximum margin separating hyperplane, Example: SVM: Maximum margin separating hyperplane, Example: SVM: Separating hyperplane for unbalanced classes, Example: Sample pipeline for text feature extraction and evaluation, Example: Scalable learning with polynomial kernel aproximation, Example: Scaling the regularization parameter for SVCs, Example: Segmenting the picture of greek coins in regions, Example: Selecting dimensionality reduction with Pipeline and GridSearchCV, Example: Selecting the number of clusters with silhouette analysis on KMeans clustering, Example: Semi-supervised Classification on a Text Dataset, Example: Simple 1D Kernel Density Estimation, Example: Sparse coding with a precomputed dictionary, Example: Sparse inverse covariance estimation, Example: Spectral clustering for image segmentation, Example: Statistical comparison of models using grid search, Example: Support Vector Regression using linear and non-linear kernels, Example: Test with permutations the significance of a classification score, Example: The Johnson-Lindenstrauss bound for embedding with random projections, Example: Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation, Example: Tweedie regression on insurance claims, Example: Understanding the decision tree structure, Example: Using KBinsDiscretizer to discretize continuous features, Example: Various Agglomerative Clustering on a 2D embedding of digits, Example: Varying regularization in Multi-layer Perceptron, Example: Visualization of MLP weights on MNIST, Example: Visualizations with Display Objects, Example: Visualizing cross-validation behavior in scikit-learn, Example: Visualizing the stock market structure, Example: t-SNE: The effect of various perplexity values on the shape, calibration.CalibratedClassifierCV.get_params(), calibration.CalibratedClassifierCV.predict(), calibration.CalibratedClassifierCV.predict_proba(), calibration.CalibratedClassifierCV.score(), calibration.CalibratedClassifierCV.set_params(), cluster.AffinityPropagation.fit_predict(), cluster.AgglomerativeClustering.fit_predict(), cluster.AgglomerativeClustering.get_params(), cluster.AgglomerativeClustering.set_params(), cluster.FeatureAgglomeration.fit_predict(), cluster.FeatureAgglomeration.fit_transform(), cluster.FeatureAgglomeration.get_params(), cluster.FeatureAgglomeration.inverse_transform(), cluster.FeatureAgglomeration.set_params(), cluster.SpectralBiclustering.biclusters_(), cluster.SpectralBiclustering.get_indices(), cluster.SpectralBiclustering.get_params(), cluster.SpectralBiclustering.get_submatrix(), cluster.SpectralBiclustering.set_params(), cluster.SpectralCoclustering.biclusters_(), cluster.SpectralCoclustering.get_indices(), cluster.SpectralCoclustering.get_params(), cluster.SpectralCoclustering.get_submatrix(), cluster.SpectralCoclustering.set_params(), compose.ColumnTransformer.fit_transform(), compose.ColumnTransformer.get_feature_names(), compose.ColumnTransformer.named_transformers_(), compose.TransformedTargetRegressor.get_params(), compose.TransformedTargetRegressor.predict(), compose.TransformedTargetRegressor.score(), compose.TransformedTargetRegressor.set_params(), sklearn.compose.make_column_transformer(), covariance.EllipticEnvelope.correct_covariance(), covariance.EllipticEnvelope.decision_function(), covariance.EllipticEnvelope.fit_predict(), covariance.EllipticEnvelope.get_precision(), covariance.EllipticEnvelope.mahalanobis(), covariance.EllipticEnvelope.reweight_covariance(), covariance.EllipticEnvelope.score_samples(), covariance.EmpiricalCovariance.error_norm(), covariance.EmpiricalCovariance.get_params(), covariance.EmpiricalCovariance.get_precision(), covariance.EmpiricalCovariance.mahalanobis(), covariance.EmpiricalCovariance.set_params(), covariance.GraphicalLasso.get_precision(), covariance.GraphicalLassoCV.get_precision(), covariance.GraphicalLassoCV.mahalanobis(), covariance.MinCovDet.correct_covariance(), covariance.MinCovDet.reweight_covariance(), covariance.ShrunkCovariance.get_precision(), covariance.ShrunkCovariance.mahalanobis(), sklearn.covariance.empirical_covariance(), cross_decomposition.CCA.inverse_transform(), cross_decomposition.PLSCanonical.fit_transform(), cross_decomposition.PLSCanonical.get_params(), cross_decomposition.PLSCanonical.inverse_transform(), cross_decomposition.PLSCanonical.predict(), cross_decomposition.PLSCanonical.set_params(), cross_decomposition.PLSCanonical.transform(), cross_decomposition.PLSRegression.fit_transform(), cross_decomposition.PLSRegression.get_params(), cross_decomposition.PLSRegression.inverse_transform(), cross_decomposition.PLSRegression.predict(), cross_decomposition.PLSRegression.score(), cross_decomposition.PLSRegression.set_params(), cross_decomposition.PLSRegression.transform(), cross_decomposition.PLSSVD.fit_transform(), datasets.make_multilabel_classification(), sklearn.datasets.fetch_20newsgroups_vectorized(), sklearn.datasets.fetch_california_housing(), sklearn.datasets.fetch_species_distributions(), sklearn.datasets.make_gaussian_quantiles(), sklearn.datasets.make_multilabel_classification(), sklearn.datasets.make_sparse_coded_signal(), sklearn.datasets.make_sparse_spd_matrix(), sklearn.datasets.make_sparse_uncorrelated(), decomposition.DictionaryLearning.fit_transform(), decomposition.DictionaryLearning.get_params(), decomposition.DictionaryLearning.set_params(), decomposition.DictionaryLearning.transform(), decomposition.FactorAnalysis.fit_transform(), decomposition.FactorAnalysis.get_covariance(), decomposition.FactorAnalysis.get_params(), decomposition.FactorAnalysis.get_precision(), decomposition.FactorAnalysis.score_samples(), decomposition.FactorAnalysis.set_params(), decomposition.FastICA.inverse_transform(), decomposition.IncrementalPCA.fit_transform(), decomposition.IncrementalPCA.get_covariance(), decomposition.IncrementalPCA.get_params(), decomposition.IncrementalPCA.get_precision(), decomposition.IncrementalPCA.inverse_transform(), decomposition.IncrementalPCA.partial_fit(), decomposition.IncrementalPCA.set_params(), decomposition.KernelPCA.inverse_transform(), decomposition.LatentDirichletAllocation(), decomposition.LatentDirichletAllocation.fit(), decomposition.LatentDirichletAllocation.fit_transform(), decomposition.LatentDirichletAllocation.get_params(), decomposition.LatentDirichletAllocation.partial_fit(), decomposition.LatentDirichletAllocation.perplexity(), decomposition.LatentDirichletAllocation.score(), decomposition.LatentDirichletAllocation.set_params(), decomposition.LatentDirichletAllocation.transform(), decomposition.MiniBatchDictionaryLearning, decomposition.MiniBatchDictionaryLearning(), decomposition.MiniBatchDictionaryLearning.fit(), decomposition.MiniBatchDictionaryLearning.fit_transform(), decomposition.MiniBatchDictionaryLearning.get_params(), decomposition.MiniBatchDictionaryLearning.partial_fit(), decomposition.MiniBatchDictionaryLearning.set_params(), decomposition.MiniBatchDictionaryLearning.transform(), decomposition.MiniBatchSparsePCA.fit_transform(), decomposition.MiniBatchSparsePCA.get_params(), decomposition.MiniBatchSparsePCA.set_params(), decomposition.MiniBatchSparsePCA.transform(), decomposition.SparseCoder.fit_transform(), decomposition.TruncatedSVD.fit_transform(), decomposition.TruncatedSVD.inverse_transform(), decomposition.non_negative_factorization(), sklearn.decomposition.dict_learning_online(), sklearn.decomposition.non_negative_factorization(), discriminant_analysis.LinearDiscriminantAnalysis, discriminant_analysis.LinearDiscriminantAnalysis(), discriminant_analysis.LinearDiscriminantAnalysis.decision_function(), discriminant_analysis.LinearDiscriminantAnalysis.fit(), discriminant_analysis.LinearDiscriminantAnalysis.fit_transform(), discriminant_analysis.LinearDiscriminantAnalysis.get_params(), discriminant_analysis.LinearDiscriminantAnalysis.predict(), discriminant_analysis.LinearDiscriminantAnalysis.predict_log_proba(), discriminant_analysis.LinearDiscriminantAnalysis.predict_proba(), discriminant_analysis.LinearDiscriminantAnalysis.score(), discriminant_analysis.LinearDiscriminantAnalysis.set_params(), discriminant_analysis.LinearDiscriminantAnalysis.transform(), discriminant_analysis.QuadraticDiscriminantAnalysis, discriminant_analysis.QuadraticDiscriminantAnalysis(), discriminant_analysis.QuadraticDiscriminantAnalysis.decision_function(), discriminant_analysis.QuadraticDiscriminantAnalysis.fit(), discriminant_analysis.QuadraticDiscriminantAnalysis.get_params(), discriminant_analysis.QuadraticDiscriminantAnalysis.predict(), discriminant_analysis.QuadraticDiscriminantAnalysis.predict_log_proba(), discriminant_analysis.QuadraticDiscriminantAnalysis.predict_proba(), discriminant_analysis.QuadraticDiscriminantAnalysis.score(), discriminant_analysis.QuadraticDiscriminantAnalysis.set_params(), dummy.DummyClassifier.predict_log_proba(), ensemble.AdaBoostClassifier.decision_function(), ensemble.AdaBoostClassifier.feature_importances_(), ensemble.AdaBoostClassifier.predict_log_proba(), ensemble.AdaBoostClassifier.predict_proba(), ensemble.AdaBoostClassifier.staged_decision_function(), ensemble.AdaBoostClassifier.staged_predict(), ensemble.AdaBoostClassifier.staged_predict_proba(), ensemble.AdaBoostClassifier.staged_score(), ensemble.AdaBoostRegressor.feature_importances_(), ensemble.AdaBoostRegressor.staged_predict(), ensemble.AdaBoostRegressor.staged_score(), ensemble.BaggingClassifier.decision_function(), ensemble.BaggingClassifier.estimators_samples_(), ensemble.BaggingClassifier.predict_log_proba(), ensemble.BaggingClassifier.predict_proba(), ensemble.BaggingRegressor.estimators_samples_(), ensemble.ExtraTreesClassifier.decision_path(), ensemble.ExtraTreesClassifier.feature_importances_(), ensemble.ExtraTreesClassifier.get_params(), ensemble.ExtraTreesClassifier.predict_log_proba(), ensemble.ExtraTreesClassifier.predict_proba(), ensemble.ExtraTreesClassifier.set_params(), ensemble.ExtraTreesRegressor.decision_path(), ensemble.ExtraTreesRegressor.feature_importances_(), ensemble.ExtraTreesRegressor.get_params(), ensemble.ExtraTreesRegressor.set_params(), ensemble.GradientBoostingClassifier.apply(), ensemble.GradientBoostingClassifier.decision_function(), ensemble.GradientBoostingClassifier.feature_importances_(), ensemble.GradientBoostingClassifier.fit(), ensemble.GradientBoostingClassifier.get_params(), ensemble.GradientBoostingClassifier.predict(), ensemble.GradientBoostingClassifier.predict_log_proba(), ensemble.GradientBoostingClassifier.predict_proba(), ensemble.GradientBoostingClassifier.score(), ensemble.GradientBoostingClassifier.set_params(), ensemble.GradientBoostingClassifier.staged_decision_function(), ensemble.GradientBoostingClassifier.staged_predict(), ensemble.GradientBoostingClassifier.staged_predict_proba(), ensemble.GradientBoostingRegressor.apply(), ensemble.GradientBoostingRegressor.feature_importances_(), ensemble.GradientBoostingRegressor.get_params(), ensemble.GradientBoostingRegressor.predict(), ensemble.GradientBoostingRegressor.score(), ensemble.GradientBoostingRegressor.set_params(), ensemble.GradientBoostingRegressor.staged_predict(), ensemble.HistGradientBoostingClassifier(), ensemble.HistGradientBoostingClassifier.decision_function(), ensemble.HistGradientBoostingClassifier.fit(), ensemble.HistGradientBoostingClassifier.get_params(), ensemble.HistGradientBoostingClassifier.predict(), ensemble.HistGradientBoostingClassifier.predict_proba(), ensemble.HistGradientBoostingClassifier.score(), ensemble.HistGradientBoostingClassifier.set_params(), ensemble.HistGradientBoostingClassifier.staged_decision_function(), ensemble.HistGradientBoostingClassifier.staged_predict(), ensemble.HistGradientBoostingClassifier.staged_predict_proba(), ensemble.HistGradientBoostingRegressor.fit(), ensemble.HistGradientBoostingRegressor.get_params(), ensemble.HistGradientBoostingRegressor.predict(), ensemble.HistGradientBoostingRegressor.score(), ensemble.HistGradientBoostingRegressor.set_params(), ensemble.HistGradientBoostingRegressor.staged_predict(), ensemble.IsolationForest.decision_function(), ensemble.IsolationForest.estimators_samples_(), ensemble.RandomForestClassifier.decision_path(), ensemble.RandomForestClassifier.feature_importances_(), ensemble.RandomForestClassifier.get_params(), ensemble.RandomForestClassifier.predict(), ensemble.RandomForestClassifier.predict_log_proba(), ensemble.RandomForestClassifier.predict_proba(), ensemble.RandomForestClassifier.set_params(), ensemble.RandomForestRegressor.decision_path(), ensemble.RandomForestRegressor.feature_importances_(), ensemble.RandomForestRegressor.get_params(), ensemble.RandomForestRegressor.set_params(), ensemble.RandomTreesEmbedding.decision_path(), ensemble.RandomTreesEmbedding.feature_importances_(), ensemble.RandomTreesEmbedding.fit_transform(), ensemble.RandomTreesEmbedding.get_params(), ensemble.RandomTreesEmbedding.set_params(), ensemble.RandomTreesEmbedding.transform(), ensemble.StackingClassifier.decision_function(), ensemble.StackingClassifier.fit_transform(), ensemble.StackingClassifier.n_features_in_(), ensemble.StackingClassifier.predict_proba(), ensemble.StackingRegressor.fit_transform(), ensemble.StackingRegressor.n_features_in_(), ensemble.VotingClassifier.fit_transform(), ensemble.VotingClassifier.predict_proba(), exceptions.ConvergenceWarning.with_traceback(), exceptions.DataConversionWarning.with_traceback(), exceptions.DataDimensionalityWarning.with_traceback(), exceptions.EfficiencyWarning.with_traceback(), exceptions.FitFailedWarning.with_traceback(), exceptions.NotFittedError.with_traceback(), exceptions.UndefinedMetricWarning.with_traceback(), feature_extraction.DictVectorizer.fit_transform(), feature_extraction.DictVectorizer.get_feature_names(), feature_extraction.DictVectorizer.get_params(), feature_extraction.DictVectorizer.inverse_transform(), feature_extraction.DictVectorizer.restrict(), feature_extraction.DictVectorizer.set_params(), feature_extraction.DictVectorizer.transform(), feature_extraction.FeatureHasher.fit_transform(), feature_extraction.FeatureHasher.get_params(), feature_extraction.FeatureHasher.set_params(), feature_extraction.FeatureHasher.transform(), feature_extraction.image.PatchExtractor(), feature_extraction.image.PatchExtractor.fit(), feature_extraction.image.PatchExtractor.get_params(), feature_extraction.image.PatchExtractor.set_params(), feature_extraction.image.PatchExtractor.transform(), feature_extraction.image.extract_patches_2d(), feature_extraction.image.reconstruct_from_patches_2d(), sklearn.feature_extraction.image.extract_patches_2d(), sklearn.feature_extraction.image.grid_to_graph(), sklearn.feature_extraction.image.img_to_graph(), sklearn.feature_extraction.image.reconstruct_from_patches_2d(), feature_extraction.text.CountVectorizer(), feature_extraction.text.CountVectorizer.build_analyzer(), feature_extraction.text.CountVectorizer.build_preprocessor(), feature_extraction.text.CountVectorizer.build_tokenizer(), feature_extraction.text.CountVectorizer.decode(), feature_extraction.text.CountVectorizer.fit(), feature_extraction.text.CountVectorizer.fit_transform(), feature_extraction.text.CountVectorizer.get_feature_names(), feature_extraction.text.CountVectorizer.get_params(), feature_extraction.text.CountVectorizer.get_stop_words(), feature_extraction.text.CountVectorizer.inverse_transform(), feature_extraction.text.CountVectorizer.set_params(), feature_extraction.text.CountVectorizer.transform(), feature_extraction.text.HashingVectorizer, feature_extraction.text.HashingVectorizer(), feature_extraction.text.HashingVectorizer.build_analyzer(), feature_extraction.text.HashingVectorizer.build_preprocessor(), feature_extraction.text.HashingVectorizer.build_tokenizer(), feature_extraction.text.HashingVectorizer.decode(), feature_extraction.text.HashingVectorizer.fit(), feature_extraction.text.HashingVectorizer.fit_transform(), feature_extraction.text.HashingVectorizer.get_params(), feature_extraction.text.HashingVectorizer.get_stop_words(), feature_extraction.text.HashingVectorizer.partial_fit(), feature_extraction.text.HashingVectorizer.set_params(), feature_extraction.text.HashingVectorizer.transform(), feature_extraction.text.TfidfTransformer(), feature_extraction.text.TfidfTransformer.fit(), feature_extraction.text.TfidfTransformer.fit_transform(), feature_extraction.text.TfidfTransformer.get_params(), feature_extraction.text.TfidfTransformer.set_params(), feature_extraction.text.TfidfTransformer.transform(), feature_extraction.text.TfidfVectorizer(), feature_extraction.text.TfidfVectorizer.build_analyzer(), feature_extraction.text.TfidfVectorizer.build_preprocessor(), feature_extraction.text.TfidfVectorizer.build_tokenizer(), feature_extraction.text.TfidfVectorizer.decode(), feature_extraction.text.TfidfVectorizer.fit(), feature_extraction.text.TfidfVectorizer.fit_transform(), feature_extraction.text.TfidfVectorizer.get_feature_names(), feature_extraction.text.TfidfVectorizer.get_params(), feature_extraction.text.TfidfVectorizer.get_stop_words(), feature_extraction.text.TfidfVectorizer.inverse_transform(), feature_extraction.text.TfidfVectorizer.set_params(), feature_extraction.text.TfidfVectorizer.transform(), feature_selection.GenericUnivariateSelect, feature_selection.GenericUnivariateSelect(), feature_selection.GenericUnivariateSelect.fit(), feature_selection.GenericUnivariateSelect.fit_transform(), feature_selection.GenericUnivariateSelect.get_params(), feature_selection.GenericUnivariateSelect.get_support(), feature_selection.GenericUnivariateSelect.inverse_transform(), feature_selection.GenericUnivariateSelect.set_params(), feature_selection.GenericUnivariateSelect.transform(), feature_selection.RFE.decision_function(), feature_selection.RFE.inverse_transform(), feature_selection.RFE.predict_log_proba(), feature_selection.RFECV.decision_function(), feature_selection.RFECV.inverse_transform(), feature_selection.RFECV.predict_log_proba(), feature_selection.SelectFdr.fit_transform(), feature_selection.SelectFdr.get_support(), feature_selection.SelectFdr.inverse_transform(), feature_selection.SelectFpr.fit_transform(), feature_selection.SelectFpr.get_support(), feature_selection.SelectFpr.inverse_transform(), feature_selection.SelectFromModel.fit_transform(), feature_selection.SelectFromModel.get_params(), feature_selection.SelectFromModel.get_support(), feature_selection.SelectFromModel.inverse_transform(), feature_selection.SelectFromModel.partial_fit(), feature_selection.SelectFromModel.set_params(), feature_selection.SelectFromModel.transform(), feature_selection.SelectFwe.fit_transform(), feature_selection.SelectFwe.get_support(), feature_selection.SelectFwe.inverse_transform(), feature_selection.SelectKBest.fit_transform(), feature_selection.SelectKBest.get_params(), feature_selection.SelectKBest.get_support(), feature_selection.SelectKBest.inverse_transform(), feature_selection.SelectKBest.set_params(), feature_selection.SelectKBest.transform(), feature_selection.SelectPercentile.fit_transform(), feature_selection.SelectPercentile.get_params(), feature_selection.SelectPercentile.get_support(), feature_selection.SelectPercentile.inverse_transform(), feature_selection.SelectPercentile.set_params(), feature_selection.SelectPercentile.transform(), feature_selection.SelectorMixin.fit_transform(), feature_selection.SelectorMixin.get_support(), feature_selection.SelectorMixin.inverse_transform(), feature_selection.SelectorMixin.transform(), feature_selection.SequentialFeatureSelector, feature_selection.SequentialFeatureSelector(), feature_selection.SequentialFeatureSelector.fit(), feature_selection.SequentialFeatureSelector.fit_transform(), feature_selection.SequentialFeatureSelector.get_params(), feature_selection.SequentialFeatureSelector.get_support(), feature_selection.SequentialFeatureSelector.inverse_transform(), feature_selection.SequentialFeatureSelector.set_params(), feature_selection.SequentialFeatureSelector.transform(), feature_selection.VarianceThreshold.fit(), feature_selection.VarianceThreshold.fit_transform(), feature_selection.VarianceThreshold.get_params(), feature_selection.VarianceThreshold.get_support(), feature_selection.VarianceThreshold.inverse_transform(), feature_selection.VarianceThreshold.set_params(), feature_selection.VarianceThreshold.transform(), feature_selection.mutual_info_regression(), sklearn.feature_selection.mutual_info_classif(), sklearn.feature_selection.mutual_info_regression(), gaussian_process.GaussianProcessClassifier, gaussian_process.GaussianProcessClassifier(), gaussian_process.GaussianProcessClassifier.fit(), gaussian_process.GaussianProcessClassifier.get_params(), gaussian_process.GaussianProcessClassifier.log_marginal_likelihood(), gaussian_process.GaussianProcessClassifier.predict(), gaussian_process.GaussianProcessClassifier.predict_proba(), gaussian_process.GaussianProcessClassifier.score(), gaussian_process.GaussianProcessClassifier.set_params(), gaussian_process.GaussianProcessRegressor, gaussian_process.GaussianProcessRegressor(), gaussian_process.GaussianProcessRegressor.fit(), gaussian_process.GaussianProcessRegressor.get_params(), gaussian_process.GaussianProcessRegressor.log_marginal_likelihood(), gaussian_process.GaussianProcessRegressor.predict(), gaussian_process.GaussianProcessRegressor.sample_y(), gaussian_process.GaussianProcessRegressor.score(), gaussian_process.GaussianProcessRegressor.set_params(), gaussian_process.kernels.CompoundKernel(), gaussian_process.kernels.CompoundKernel.__call__(), gaussian_process.kernels.CompoundKernel.bounds(), gaussian_process.kernels.CompoundKernel.clone_with_theta(), gaussian_process.kernels.CompoundKernel.diag(), gaussian_process.kernels.CompoundKernel.get_params(), gaussian_process.kernels.CompoundKernel.hyperparameters(), gaussian_process.kernels.CompoundKernel.is_stationary(), gaussian_process.kernels.CompoundKernel.n_dims(), gaussian_process.kernels.CompoundKernel.requires_vector_input(), gaussian_process.kernels.CompoundKernel.set_params(), gaussian_process.kernels.CompoundKernel.theta(), gaussian_process.kernels.ConstantKernel(), gaussian_process.kernels.ConstantKernel.__call__(), gaussian_process.kernels.ConstantKernel.bounds(), gaussian_process.kernels.ConstantKernel.clone_with_theta(), gaussian_process.kernels.ConstantKernel.diag(), gaussian_process.kernels.ConstantKernel.get_params(), gaussian_process.kernels.ConstantKernel.hyperparameters(), gaussian_process.kernels.ConstantKernel.is_stationary(), gaussian_process.kernels.ConstantKernel.n_dims(), gaussian_process.kernels.ConstantKernel.requires_vector_input(), gaussian_process.kernels.ConstantKernel.set_params(), gaussian_process.kernels.ConstantKernel.theta(), gaussian_process.kernels.DotProduct.__call__(), gaussian_process.kernels.DotProduct.bounds(), gaussian_process.kernels.DotProduct.clone_with_theta(), gaussian_process.kernels.DotProduct.diag(), gaussian_process.kernels.DotProduct.get_params(), gaussian_process.kernels.DotProduct.hyperparameters(), gaussian_process.kernels.DotProduct.is_stationary(), gaussian_process.kernels.DotProduct.n_dims(), gaussian_process.kernels.DotProduct.requires_vector_input(), gaussian_process.kernels.DotProduct.set_params(), gaussian_process.kernels.DotProduct.theta(), gaussian_process.kernels.ExpSineSquared(), gaussian_process.kernels.ExpSineSquared.__call__(), gaussian_process.kernels.ExpSineSquared.bounds(), gaussian_process.kernels.ExpSineSquared.clone_with_theta(), gaussian_process.kernels.ExpSineSquared.diag(), gaussian_process.kernels.ExpSineSquared.get_params(), gaussian_process.kernels.ExpSineSquared.hyperparameter_length_scale(), gaussian_process.kernels.ExpSineSquared.hyperparameters(), gaussian_process.kernels.ExpSineSquared.is_stationary(), gaussian_process.kernels.ExpSineSquared.n_dims(), gaussian_process.kernels.ExpSineSquared.requires_vector_input(), gaussian_process.kernels.ExpSineSquared.set_params(), gaussian_process.kernels.ExpSineSquared.theta(), gaussian_process.kernels.Exponentiation(), gaussian_process.kernels.Exponentiation.__call__(), gaussian_process.kernels.Exponentiation.bounds(), gaussian_process.kernels.Exponentiation.clone_with_theta(), gaussian_process.kernels.Exponentiation.diag(), gaussian_process.kernels.Exponentiation.get_params(), gaussian_process.kernels.Exponentiation.hyperparameters(), gaussian_process.kernels.Exponentiation.is_stationary(), gaussian_process.kernels.Exponentiation.n_dims(), gaussian_process.kernels.Exponentiation.requires_vector_input(), gaussian_process.kernels.Exponentiation.set_params(), gaussian_process.kernels.Exponentiation.theta(), gaussian_process.kernels.Hyperparameter(), gaussian_process.kernels.Hyperparameter.__call__(), gaussian_process.kernels.Hyperparameter.bounds, gaussian_process.kernels.Hyperparameter.count(), gaussian_process.kernels.Hyperparameter.fixed, gaussian_process.kernels.Hyperparameter.index(), gaussian_process.kernels.Hyperparameter.n_elements, gaussian_process.kernels.Hyperparameter.name, gaussian_process.kernels.Hyperparameter.value_type, gaussian_process.kernels.Kernel.__call__(), gaussian_process.kernels.Kernel.clone_with_theta(), gaussian_process.kernels.Kernel.get_params(), gaussian_process.kernels.Kernel.hyperparameters(), gaussian_process.kernels.Kernel.is_stationary(), gaussian_process.kernels.Kernel.requires_vector_input(), gaussian_process.kernels.Kernel.set_params(), gaussian_process.kernels.Matern.__call__(), gaussian_process.kernels.Matern.clone_with_theta(), gaussian_process.kernels.Matern.get_params(), gaussian_process.kernels.Matern.hyperparameters(), gaussian_process.kernels.Matern.is_stationary(), gaussian_process.kernels.Matern.requires_vector_input(), gaussian_process.kernels.Matern.set_params(), gaussian_process.kernels.PairwiseKernel(), gaussian_process.kernels.PairwiseKernel.__call__(), gaussian_process.kernels.PairwiseKernel.bounds(), gaussian_process.kernels.PairwiseKernel.clone_with_theta(), gaussian_process.kernels.PairwiseKernel.diag(), gaussian_process.kernels.PairwiseKernel.get_params(), gaussian_process.kernels.PairwiseKernel.hyperparameters(), gaussian_process.kernels.PairwiseKernel.is_stationary(), gaussian_process.kernels.PairwiseKernel.n_dims(), gaussian_process.kernels.PairwiseKernel.requires_vector_input(), gaussian_process.kernels.PairwiseKernel.set_params(), gaussian_process.kernels.PairwiseKernel.theta(), gaussian_process.kernels.Product.__call__(), gaussian_process.kernels.Product.bounds(), gaussian_process.kernels.Product.clone_with_theta(), gaussian_process.kernels.Product.get_params(), gaussian_process.kernels.Product.hyperparameters(), gaussian_process.kernels.Product.is_stationary(), gaussian_process.kernels.Product.n_dims(), gaussian_process.kernels.Product.requires_vector_input(), gaussian_process.kernels.Product.set_params(), gaussian_process.kernels.RBF.clone_with_theta(), gaussian_process.kernels.RBF.get_params(), gaussian_process.kernels.RBF.hyperparameters(), gaussian_process.kernels.RBF.is_stationary(), gaussian_process.kernels.RBF.requires_vector_input(), gaussian_process.kernels.RBF.set_params(), gaussian_process.kernels.RationalQuadratic, gaussian_process.kernels.RationalQuadratic(), gaussian_process.kernels.RationalQuadratic.__call__(), gaussian_process.kernels.RationalQuadratic.bounds(), gaussian_process.kernels.RationalQuadratic.clone_with_theta(), gaussian_process.kernels.RationalQuadratic.diag(), gaussian_process.kernels.RationalQuadratic.get_params(), gaussian_process.kernels.RationalQuadratic.hyperparameters(), gaussian_process.kernels.RationalQuadratic.is_stationary(), gaussian_process.kernels.RationalQuadratic.n_dims(), gaussian_process.kernels.RationalQuadratic.requires_vector_input(), gaussian_process.kernels.RationalQuadratic.set_params(), gaussian_process.kernels.RationalQuadratic.theta(), gaussian_process.kernels.Sum.clone_with_theta(), gaussian_process.kernels.Sum.get_params(), gaussian_process.kernels.Sum.hyperparameters(), gaussian_process.kernels.Sum.is_stationary(), gaussian_process.kernels.Sum.requires_vector_input(), gaussian_process.kernels.Sum.set_params(), gaussian_process.kernels.WhiteKernel.__call__(), gaussian_process.kernels.WhiteKernel.bounds(), gaussian_process.kernels.WhiteKernel.clone_with_theta(), gaussian_process.kernels.WhiteKernel.diag(), gaussian_process.kernels.WhiteKernel.get_params(), gaussian_process.kernels.WhiteKernel.hyperparameters(), gaussian_process.kernels.WhiteKernel.is_stationary(), gaussian_process.kernels.WhiteKernel.n_dims(), gaussian_process.kernels.WhiteKernel.requires_vector_input(), gaussian_process.kernels.WhiteKernel.set_params(), gaussian_process.kernels.WhiteKernel.theta(), inspection.PartialDependenceDisplay.plot(), sklearn.inspection.permutation_importance(), sklearn.inspection.plot_partial_dependence(), isotonic.IsotonicRegression.fit_transform(), kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.AdditiveChi2Sampler.fit(), kernel_approximation.AdditiveChi2Sampler.fit_transform(), kernel_approximation.AdditiveChi2Sampler.get_params(), kernel_approximation.AdditiveChi2Sampler.set_params(), kernel_approximation.AdditiveChi2Sampler.transform(), kernel_approximation.Nystroem.fit_transform(), kernel_approximation.Nystroem.get_params(), kernel_approximation.Nystroem.set_params(), kernel_approximation.Nystroem.transform(), kernel_approximation.PolynomialCountSketch, kernel_approximation.PolynomialCountSketch(), kernel_approximation.PolynomialCountSketch.fit(), kernel_approximation.PolynomialCountSketch.fit_transform(), kernel_approximation.PolynomialCountSketch.get_params(), kernel_approximation.PolynomialCountSketch.set_params(), kernel_approximation.PolynomialCountSketch.transform(), kernel_approximation.RBFSampler.fit_transform(), kernel_approximation.RBFSampler.get_params(), kernel_approximation.RBFSampler.set_params(), kernel_approximation.RBFSampler.transform(), kernel_approximation.SkewedChi2Sampler.fit(), kernel_approximation.SkewedChi2Sampler.fit_transform(), kernel_approximation.SkewedChi2Sampler.get_params(), kernel_approximation.SkewedChi2Sampler.set_params(), kernel_approximation.SkewedChi2Sampler.transform(), linear_model.LinearRegression.get_params(), linear_model.LinearRegression.set_params(), linear_model.LogisticRegression.decision_function(), linear_model.LogisticRegression.densify(), linear_model.LogisticRegression.get_params(), linear_model.LogisticRegression.predict(), linear_model.LogisticRegression.predict_log_proba(), linear_model.LogisticRegression.predict_proba(), linear_model.LogisticRegression.set_params(), linear_model.LogisticRegression.sparsify(), linear_model.LogisticRegressionCV.decision_function(), linear_model.LogisticRegressionCV.densify(), linear_model.LogisticRegressionCV.get_params(), linear_model.LogisticRegressionCV.predict(), linear_model.LogisticRegressionCV.predict_log_proba(), linear_model.LogisticRegressionCV.predict_proba(), linear_model.LogisticRegressionCV.score(), linear_model.LogisticRegressionCV.set_params(), linear_model.LogisticRegressionCV.sparsify(), linear_model.MultiTaskElasticNet.get_params(), linear_model.MultiTaskElasticNet.predict(), linear_model.MultiTaskElasticNet.set_params(), linear_model.MultiTaskElasticNet.sparse_coef_(), linear_model.MultiTaskElasticNetCV.get_params(), linear_model.MultiTaskElasticNetCV.path(), linear_model.MultiTaskElasticNetCV.predict(), linear_model.MultiTaskElasticNetCV.score(), linear_model.MultiTaskElasticNetCV.set_params(), linear_model.MultiTaskLasso.sparse_coef_(), linear_model.MultiTaskLassoCV.get_params(), linear_model.MultiTaskLassoCV.set_params(), linear_model.OrthogonalMatchingPursuit.fit(), linear_model.OrthogonalMatchingPursuit.get_params(), linear_model.OrthogonalMatchingPursuit.predict(), linear_model.OrthogonalMatchingPursuit.score(), linear_model.OrthogonalMatchingPursuit.set_params(), linear_model.OrthogonalMatchingPursuitCV(), linear_model.OrthogonalMatchingPursuitCV.fit(), linear_model.OrthogonalMatchingPursuitCV.get_params(), linear_model.OrthogonalMatchingPursuitCV.predict(), linear_model.OrthogonalMatchingPursuitCV.score(), linear_model.OrthogonalMatchingPursuitCV.set_params(), linear_model.PassiveAggressiveClassifier(), linear_model.PassiveAggressiveClassifier.decision_function(), linear_model.PassiveAggressiveClassifier.densify(), linear_model.PassiveAggressiveClassifier.fit(), linear_model.PassiveAggressiveClassifier.get_params(), linear_model.PassiveAggressiveClassifier.partial_fit(), linear_model.PassiveAggressiveClassifier.predict(), linear_model.PassiveAggressiveClassifier.score(), linear_model.PassiveAggressiveClassifier.set_params(), linear_model.PassiveAggressiveClassifier.sparsify(), linear_model.PassiveAggressiveRegressor(), linear_model.Perceptron.decision_function(), linear_model.PoissonRegressor.get_params(), linear_model.PoissonRegressor.set_params(), linear_model.RANSACRegressor.get_params(), linear_model.RANSACRegressor.set_params(), linear_model.RidgeClassifier.decision_function(), linear_model.RidgeClassifier.get_params(), linear_model.RidgeClassifier.set_params(), linear_model.RidgeClassifierCV.decision_function(), linear_model.RidgeClassifierCV.get_params(), linear_model.RidgeClassifierCV.set_params(), linear_model.SGDClassifier.decision_function(), linear_model.SGDClassifier.predict_log_proba(), linear_model.SGDClassifier.predict_proba(), linear_model.TheilSenRegressor.get_params(), linear_model.TheilSenRegressor.set_params(), linear_model.TweedieRegressor.get_params(), linear_model.TweedieRegressor.set_params(), sklearn.linear_model.PassiveAggressiveRegressor(), sklearn.linear_model.orthogonal_mp_gram(), manifold.LocallyLinearEmbedding.fit_transform(), manifold.LocallyLinearEmbedding.get_params(), manifold.LocallyLinearEmbedding.set_params(), manifold.LocallyLinearEmbedding.transform(), manifold.SpectralEmbedding.fit_transform(), sklearn.manifold.locally_linear_embedding(), metrics.homogeneity_completeness_v_measure(), metrics.label_ranking_average_precision_score(), metrics.precision_recall_fscore_support(), sklearn.metrics.adjusted_mutual_info_score(), sklearn.metrics.average_precision_score(), sklearn.metrics.balanced_accuracy_score(), sklearn.metrics.calinski_harabasz_score(), sklearn.metrics.explained_variance_score(), sklearn.metrics.homogeneity_completeness_v_measure(), sklearn.metrics.label_ranking_average_precision_score(), sklearn.metrics.mean_absolute_percentage_error(), sklearn.metrics.multilabel_confusion_matrix(), sklearn.metrics.normalized_mutual_info_score(), sklearn.metrics.pairwise_distances_argmin(), sklearn.metrics.pairwise_distances_argmin_min(), sklearn.metrics.pairwise_distances_chunked(), sklearn.metrics.plot_precision_recall_curve(), sklearn.metrics.precision_recall_fscore_support(), sklearn.metrics.cluster.contingency_matrix(), sklearn.metrics.cluster.pair_confusion_matrix(), metrics.pairwise.nan_euclidean_distances(), metrics.pairwise.paired_cosine_distances(), metrics.pairwise.paired_euclidean_distances(), metrics.pairwise.paired_manhattan_distances(), sklearn.metrics.pairwise.additive_chi2_kernel(), sklearn.metrics.pairwise.cosine_distances(), sklearn.metrics.pairwise.cosine_similarity(), sklearn.metrics.pairwise.distance_metrics(), sklearn.metrics.pairwise.euclidean_distances(), sklearn.metrics.pairwise.haversine_distances(), sklearn.metrics.pairwise.kernel_metrics(), sklearn.metrics.pairwise.laplacian_kernel(), sklearn.metrics.pairwise.manhattan_distances(), sklearn.metrics.pairwise.nan_euclidean_distances(), sklearn.metrics.pairwise.paired_cosine_distances(), sklearn.metrics.pairwise.paired_distances(), sklearn.metrics.pairwise.paired_euclidean_distances(), sklearn.metrics.pairwise.paired_manhattan_distances(), sklearn.metrics.pairwise.pairwise_kernels(), sklearn.metrics.pairwise.polynomial_kernel(), sklearn.metrics.pairwise.sigmoid_kernel(), mixture.BayesianGaussianMixture.fit_predict(), mixture.BayesianGaussianMixture.get_params(), mixture.BayesianGaussianMixture.predict(), mixture.BayesianGaussianMixture.predict_proba(), mixture.BayesianGaussianMixture.score_samples(), mixture.BayesianGaussianMixture.set_params(), model_selection.GridSearchCV.decision_function(), model_selection.GridSearchCV.get_params(), model_selection.GridSearchCV.inverse_transform(), model_selection.GridSearchCV.predict_log_proba(), model_selection.GridSearchCV.predict_proba(), model_selection.GridSearchCV.score_samples(), model_selection.GridSearchCV.set_params(), model_selection.GroupKFold.get_n_splits(), model_selection.GroupShuffleSplit.get_n_splits(), model_selection.GroupShuffleSplit.split(), model_selection.HalvingGridSearchCV.decision_function(), model_selection.HalvingGridSearchCV.fit(), model_selection.HalvingGridSearchCV.get_params(), model_selection.HalvingGridSearchCV.inverse_transform(), model_selection.HalvingGridSearchCV.predict(), model_selection.HalvingGridSearchCV.predict_log_proba(), model_selection.HalvingGridSearchCV.predict_proba(), model_selection.HalvingGridSearchCV.score(), model_selection.HalvingGridSearchCV.score_samples(), model_selection.HalvingGridSearchCV.set_params(), model_selection.HalvingGridSearchCV.transform(), model_selection.HalvingRandomSearchCV.decision_function(), model_selection.HalvingRandomSearchCV.fit(), model_selection.HalvingRandomSearchCV.get_params(), model_selection.HalvingRandomSearchCV.inverse_transform(), model_selection.HalvingRandomSearchCV.predict(), model_selection.HalvingRandomSearchCV.predict_log_proba(), model_selection.HalvingRandomSearchCV.predict_proba(), model_selection.HalvingRandomSearchCV.score(), model_selection.HalvingRandomSearchCV.score_samples(), model_selection.HalvingRandomSearchCV.set_params(), model_selection.HalvingRandomSearchCV.transform(), model_selection.LeaveOneGroupOut.get_n_splits(), model_selection.LeaveOneOut.get_n_splits(), model_selection.LeavePGroupsOut.get_n_splits(), model_selection.PredefinedSplit.get_n_splits(), model_selection.RandomizedSearchCV.decision_function(), model_selection.RandomizedSearchCV.get_params(), model_selection.RandomizedSearchCV.inverse_transform(), model_selection.RandomizedSearchCV.predict(), model_selection.RandomizedSearchCV.predict_log_proba(), model_selection.RandomizedSearchCV.predict_proba(), model_selection.RandomizedSearchCV.score(), model_selection.RandomizedSearchCV.score_samples(), model_selection.RandomizedSearchCV.set_params(), model_selection.RandomizedSearchCV.transform(), model_selection.RepeatedKFold.get_n_splits(), model_selection.RepeatedStratifiedKFold(), model_selection.RepeatedStratifiedKFold.get_n_splits(), model_selection.RepeatedStratifiedKFold.split(), model_selection.ShuffleSplit.get_n_splits(), model_selection.StratifiedKFold.get_n_splits(), model_selection.StratifiedShuffleSplit.get_n_splits(), model_selection.StratifiedShuffleSplit.split(), model_selection.TimeSeriesSplit.get_n_splits(), sklearn.model_selection.cross_val_predict(), sklearn.model_selection.cross_val_score(), sklearn.model_selection.permutation_test_score(), sklearn.model_selection.train_test_split(), sklearn.model_selection.validation_curve(), multioutput.ClassifierChain.decision_function(), multioutput.ClassifierChain.predict_proba(), multioutput.MultiOutputClassifier.get_params(), multioutput.MultiOutputClassifier.partial_fit(), multioutput.MultiOutputClassifier.predict(), multioutput.MultiOutputClassifier.predict_proba(), multioutput.MultiOutputClassifier.score(), multioutput.MultiOutputClassifier.set_params(), multioutput.MultiOutputRegressor.get_params(), multioutput.MultiOutputRegressor.partial_fit(), multioutput.MultiOutputRegressor.predict(), multioutput.MultiOutputRegressor.set_params(), naive_bayes.BernoulliNB.predict_log_proba(), naive_bayes.CategoricalNB.predict_log_proba(), naive_bayes.CategoricalNB.predict_proba(), naive_bayes.ComplementNB.predict_log_proba(), naive_bayes.GaussianNB.predict_log_proba(), naive_bayes.MultinomialNB.predict_log_proba(), naive_bayes.MultinomialNB.predict_proba(), neighbors.BallTree.two_point_correlation(), neighbors.KNeighborsClassifier.get_params(), neighbors.KNeighborsClassifier.kneighbors(), neighbors.KNeighborsClassifier.kneighbors_graph(), neighbors.KNeighborsClassifier.predict_proba(), neighbors.KNeighborsClassifier.set_params(), neighbors.KNeighborsRegressor.get_params(), neighbors.KNeighborsRegressor.kneighbors(), neighbors.KNeighborsRegressor.kneighbors_graph(), neighbors.KNeighborsRegressor.set_params(), neighbors.KNeighborsTransformer.fit_transform(), neighbors.KNeighborsTransformer.get_params(), neighbors.KNeighborsTransformer.kneighbors(), neighbors.KNeighborsTransformer.kneighbors_graph(), neighbors.KNeighborsTransformer.set_params(), neighbors.KNeighborsTransformer.transform(), neighbors.LocalOutlierFactor.decision_function(), neighbors.LocalOutlierFactor.fit_predict(), neighbors.LocalOutlierFactor.get_params(), neighbors.LocalOutlierFactor.kneighbors(), neighbors.LocalOutlierFactor.kneighbors_graph(), neighbors.LocalOutlierFactor.score_samples(), neighbors.LocalOutlierFactor.set_params(), neighbors.NearestNeighbors.kneighbors_graph(), neighbors.NearestNeighbors.radius_neighbors(), neighbors.NearestNeighbors.radius_neighbors_graph(), neighbors.NeighborhoodComponentsAnalysis(), neighbors.NeighborhoodComponentsAnalysis.fit(), neighbors.NeighborhoodComponentsAnalysis.fit_transform(), neighbors.NeighborhoodComponentsAnalysis.get_params(), neighbors.NeighborhoodComponentsAnalysis.set_params(), neighbors.NeighborhoodComponentsAnalysis.transform(), neighbors.RadiusNeighborsClassifier.fit(), neighbors.RadiusNeighborsClassifier.get_params(), neighbors.RadiusNeighborsClassifier.predict(), neighbors.RadiusNeighborsClassifier.predict_proba(), neighbors.RadiusNeighborsClassifier.radius_neighbors(), neighbors.RadiusNeighborsClassifier.radius_neighbors_graph(), neighbors.RadiusNeighborsClassifier.score(), neighbors.RadiusNeighborsClassifier.set_params(), neighbors.RadiusNeighborsRegressor.get_params(), neighbors.RadiusNeighborsRegressor.predict(), neighbors.RadiusNeighborsRegressor.radius_neighbors(), neighbors.RadiusNeighborsRegressor.radius_neighbors_graph(), neighbors.RadiusNeighborsRegressor.score(), neighbors.RadiusNeighborsRegressor.set_params(), neighbors.RadiusNeighborsTransformer.fit(), neighbors.RadiusNeighborsTransformer.fit_transform(), neighbors.RadiusNeighborsTransformer.get_params(), neighbors.RadiusNeighborsTransformer.radius_neighbors(), neighbors.RadiusNeighborsTransformer.radius_neighbors_graph(), neighbors.RadiusNeighborsTransformer.set_params(), neighbors.RadiusNeighborsTransformer.transform(), sklearn.neighbors.radius_neighbors_graph(), neural_network.BernoulliRBM.fit_transform(), neural_network.BernoulliRBM.partial_fit(), neural_network.BernoulliRBM.score_samples(), neural_network.MLPClassifier.get_params(), neural_network.MLPClassifier.partial_fit(), neural_network.MLPClassifier.predict_log_proba(), neural_network.MLPClassifier.predict_proba(), neural_network.MLPClassifier.set_params(), neural_network.MLPRegressor.partial_fit(), pipeline.FeatureUnion.get_feature_names(), preprocessing.FunctionTransformer.fit_transform(), preprocessing.FunctionTransformer.get_params(), preprocessing.FunctionTransformer.inverse_transform(), preprocessing.FunctionTransformer.set_params(), preprocessing.FunctionTransformer.transform(), preprocessing.KBinsDiscretizer.fit_transform(), preprocessing.KBinsDiscretizer.get_params(), preprocessing.KBinsDiscretizer.inverse_transform(), preprocessing.KBinsDiscretizer.set_params(), preprocessing.KBinsDiscretizer.transform(), preprocessing.KernelCenterer.fit_transform(), preprocessing.KernelCenterer.get_params(), preprocessing.KernelCenterer.set_params(), preprocessing.LabelBinarizer.fit_transform(), preprocessing.LabelBinarizer.get_params(), preprocessing.LabelBinarizer.inverse_transform(), preprocessing.LabelBinarizer.set_params(), preprocessing.LabelEncoder.fit_transform(), preprocessing.LabelEncoder.inverse_transform(), preprocessing.MaxAbsScaler.fit_transform(), preprocessing.MaxAbsScaler.inverse_transform(), preprocessing.MinMaxScaler.fit_transform(), preprocessing.MinMaxScaler.inverse_transform(), preprocessing.MultiLabelBinarizer.fit_transform(), preprocessing.MultiLabelBinarizer.get_params(), preprocessing.MultiLabelBinarizer.inverse_transform(), preprocessing.MultiLabelBinarizer.set_params(), preprocessing.MultiLabelBinarizer.transform(), preprocessing.OneHotEncoder.fit_transform(), preprocessing.OneHotEncoder.get_feature_names(), preprocessing.OneHotEncoder.inverse_transform(), preprocessing.OrdinalEncoder.fit_transform(), preprocessing.OrdinalEncoder.get_params(), preprocessing.OrdinalEncoder.inverse_transform(), preprocessing.OrdinalEncoder.set_params(), preprocessing.PolynomialFeatures.fit_transform(), preprocessing.PolynomialFeatures.get_feature_names(), preprocessing.PolynomialFeatures.get_params(), preprocessing.PolynomialFeatures.set_params(), preprocessing.PolynomialFeatures.transform(), preprocessing.PowerTransformer.fit_transform(), preprocessing.PowerTransformer.get_params(), preprocessing.PowerTransformer.inverse_transform(), preprocessing.PowerTransformer.set_params(), preprocessing.PowerTransformer.transform(), preprocessing.QuantileTransformer.fit_transform(), preprocessing.QuantileTransformer.get_params(), preprocessing.QuantileTransformer.inverse_transform(), preprocessing.QuantileTransformer.set_params(), preprocessing.QuantileTransformer.transform(), preprocessing.RobustScaler.fit_transform(), preprocessing.RobustScaler.inverse_transform(), preprocessing.StandardScaler.fit_transform(), preprocessing.StandardScaler.get_params(), preprocessing.StandardScaler.inverse_transform(), preprocessing.StandardScaler.partial_fit(), preprocessing.StandardScaler.set_params(), sklearn.preprocessing.add_dummy_feature(), sklearn.preprocessing.quantile_transform(), random_projection.GaussianRandomProjection, random_projection.GaussianRandomProjection(), random_projection.GaussianRandomProjection.fit(), random_projection.GaussianRandomProjection.fit_transform(), random_projection.GaussianRandomProjection.get_params(), random_projection.GaussianRandomProjection.set_params(), random_projection.GaussianRandomProjection.transform(), random_projection.SparseRandomProjection(), random_projection.SparseRandomProjection.fit(), random_projection.SparseRandomProjection.fit_transform(), random_projection.SparseRandomProjection.get_params(), random_projection.SparseRandomProjection.set_params(), random_projection.SparseRandomProjection.transform(), random_projection.johnson_lindenstrauss_min_dim(), sklearn.random_projection.johnson_lindenstrauss_min_dim(), semi_supervised.LabelPropagation.get_params(), semi_supervised.LabelPropagation.predict(), semi_supervised.LabelPropagation.predict_proba(), semi_supervised.LabelPropagation.set_params(), semi_supervised.LabelSpreading.get_params(), semi_supervised.LabelSpreading.predict_proba(), semi_supervised.LabelSpreading.set_params(), semi_supervised.SelfTrainingClassifier.decision_function(), semi_supervised.SelfTrainingClassifier.fit(), semi_supervised.SelfTrainingClassifier.get_params(), semi_supervised.SelfTrainingClassifier.predict(), semi_supervised.SelfTrainingClassifier.predict_log_proba(), semi_supervised.SelfTrainingClassifier.predict_proba(), semi_supervised.SelfTrainingClassifier.score(), semi_supervised.SelfTrainingClassifier.set_params(), tree.DecisionTreeClassifier.cost_complexity_pruning_path(), tree.DecisionTreeClassifier.decision_path(), tree.DecisionTreeClassifier.feature_importances_(), tree.DecisionTreeClassifier.get_n_leaves(), tree.DecisionTreeClassifier.predict_log_proba(), tree.DecisionTreeClassifier.predict_proba(), tree.DecisionTreeRegressor.cost_complexity_pruning_path(), tree.DecisionTreeRegressor.decision_path(), tree.DecisionTreeRegressor.feature_importances_(), tree.DecisionTreeRegressor.get_n_leaves(), tree.ExtraTreeClassifier.cost_complexity_pruning_path(), tree.ExtraTreeClassifier.feature_importances_(), tree.ExtraTreeClassifier.predict_log_proba(), tree.ExtraTreeRegressor.cost_complexity_pruning_path(), tree.ExtraTreeRegressor.feature_importances_(), sklearn.utils.register_parallel_backend(), sklearn.utils.estimator_checks.check_estimator(), sklearn.utils.estimator_checks.parametrize_with_checks(), utils.estimator_checks.parametrize_with_checks(), sklearn.utils.extmath.randomized_range_finder(), sklearn.utils.graph.single_source_shortest_path_length(), utils.graph.single_source_shortest_path_length(), sklearn.utils.graph_shortest_path.graph_shortest_path(), utils.graph_shortest_path.graph_shortest_path(), sklearn.utils.metaestimators.if_delegate_has_method(), utils.metaestimators.if_delegate_has_method(), sklearn.utils.random.sample_without_replacement(), utils.random.sample_without_replacement(), sklearn.utils.sparsefuncs.incr_mean_variance_axis(), sklearn.utils.sparsefuncs.inplace_column_scale(), sklearn.utils.sparsefuncs.inplace_csr_column_scale(), sklearn.utils.sparsefuncs.inplace_row_scale(), sklearn.utils.sparsefuncs.inplace_swap_column(), sklearn.utils.sparsefuncs.inplace_swap_row(), sklearn.utils.sparsefuncs.mean_variance_axis(), utils.sparsefuncs.incr_mean_variance_axis(), utils.sparsefuncs.inplace_csr_column_scale(), sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1(), sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2(), utils.sparsefuncs_fast.inplace_csr_row_normalize_l1(), utils.sparsefuncs_fast.inplace_csr_row_normalize_l2(), sklearn.utils.validation.check_is_fitted(), sklearn.utils.validation.check_symmetric(), sklearn.utils.validation.has_fit_parameter().

Miramonte Barrio Viejo, Live Oak, Ca Demographics, Land For Sale Raymore, Mo, Old Saybrook Chili Fest 2023, Articles V

voting ensemble classifier